In vitro Anti-inflammatory Activity of Endemic *Artocarpus nobilis* Thw Found in Sri Lanka

S. P. N. N. Senadeera a, K. S. K. Fernando a, W. L. L. N. Wickramasekara a, M. Y. S. Fernando a, C. B. Ranaweera a*, Weranga Rajapaksha b and A. R. N. Silva c*

a Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Sri Lanka.

b Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Science, CINEC Campus, Malabe, Sri Lanka.

c Department of Basic Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Sri Lanka.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/APRJ/2021/v8i430192

(1) Dr. Langa Tembo, University of Zambia, Zambia.

Reviewers:

(1) Emmanuel Ilieanyi Attah, University of Nigeria, Nigeria.

(2) Dhanalekshmi Um, National University of Science And Technology, Oman.

(3) Yordhathai Thongsri, Naresuan University, Thailand.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/80496

Received 20 October 2021

Accepted 27 December 2021

Published 29 December 2021

ABSTRACT

Aims: To investigate *in vitro* anti-inflammatory activity of aqueous, methanol, dichloromethane, and hexane extracts of *Artocarpus nobilis* Thw. leaves and stem bark using heat-induced protein denaturation test (egg albumin denaturation).

Methodology: About 500 g of each matured, fully expanded leaves and stem bark of *Artocarpus nobilis* were collected, washed and air-dried. Leaves and stem bark parts were grounded to obtain a fine powder material. The extractions were obtained using the decoction extraction method. Anti-inflammatory activity was evaluated using the heat-induced egg albumin denaturation method. Diclofenac sodium was used as the positive control.

Results: Results showed that Diclofenac sodium exhibited an IC₅₀ value of 243.4 µg/mL and methanolic stem bark extract had an IC₅₀ Value of 249.8 µg/mL for heat-induced egg albumin denaturation.

Corresponding author: E-mail: nsrajith@kdu.ac.lk, cbr2704@kdu.ac.lk, senadeeraspmn@kdu.ac.lk;
protein denaturation test. \(R^2 \) and \(P \) values for aqueous, methanol, dichloromethane, and hexane extracts indicated that there was a strong, statistically significant correlation (\(P<0.01 \)) between concentration and percentage inhibition for all extracts of *A. nobilis* Thw. However, methanol stem bark extract demonstrated the highest efficacy and potency with similar activity observed for the positive control Diclofenac sodium.

Conclusion: Methanol stem bark extract of *Artocarpus nobilis* Thw. have marked *in vitro* anti-inflammatory activity. Further studies are necessary to determine the mechanism and the active constituents responsible for the anti-inflammatory activity of the plant parts of *Artocarpus nobilis* Thw.

Keywords: *Artocarpus nobilis* thw.; anti-inflammatory activity; ethanomedicine; protein denaturation; heat-induced egg albumin protein denaturation test; Sri Lanka.

1. INTRODUCTION

Inflammation is a nonspecific response from the body's immune system [1-3]. This response occurs when bacteria, trauma, chemicals, heat, or some other cause damages to the tissues, and chemical mediators are released by damaged cells. Blood vessels are stimulated by these chemicals to leak fluid into the tissues, causing swelling. This allows the foreign material to be removed from further contact with the body [2]. When inflammation is not regulated it can become rapid and aggressive causing more damage to the tissues [3]. Anti-inflammatory agents control inflammation and prevent excessive tissue damage [4]. One of the most widely prescribed anti-inflammatory drug is Non-steroidal anti-inflammatory medications (NSAIDs) [5]. Even though NSAIDs are effective for anti-inflammation they have demonstrated many side effects, such as gastrointestinal mucosal damage, increased blood pressure, congestive heart failure, and hormonal imbalances [6]. Therefore, it is important to identify new drug molecules with minimum side effects. Plants have many phytoconstituents that are effective for inflammation such as flavonoids, terpenoids, polyphenols, etc., and screening of medicinal plants for anti-inflammation is therefore important [7]. Medicinal plants that are used in folk and ayurvedic medicine are a great alternative to find novel treatments and for the development of novel anti-microbials. Hence, screening of medicinal plants for anti-inflammation and anti-microbial activity is in all time high demand [7,8,9,10,11,12].

Artocarpus nobilis Thw. belongs to the family *Moraceae* with 40 genera and 60 species [13,14,15]. It is an economically and medicinally important endemic tree in Sri Lanka, which is listed under the “vulnerable” category by the World Conservation Monitoring Centre [16]. *Artocarpus nobilis* Thw. commonly found in the wet zone, the mid-country homesteads, and the wet zone forests in Sri Lanka [17]. It is known as “Wal Del”, “Badi Del”, “Sinhala Del” or as “Hingala Del” in Sinhala [13,14], and Aresinipilaka, Asiri-piliaki in Tamil, Ceylon wild breadfruit in English [14]. Presently the *Artocarpus nobilis* Thw. is used in folk and ayurvedic medicine for its well-known anti-helmintic, and anti-microbial properties. Bark and latex are used for abscesses and blisters, Edible fruits and seeds possess good nutritional value and are mainly used for worm infections (e.g. *Ascariasis*) and dysentery [13,14,18]. As anti-inflammatory activity can be mediated through anti-microbial activity, the presence of such properties may be taken as evidence of possible anti-inflammatory activity [19]. Various parts of this plant consisted of phytoconstituents which are responsible for anti-inflammatory activity and other pharmacological properties. In the *Artocarpus* genus as phytoconstituents flavonoids, terpenoids, triterpenes, polyphenols, geranyl chalcone derivatives, geranylated phenolic constituents, stilbene derivatives, xanthones, and cycloartane-type triterpenoids are contained [20]. Apart from these phytochemical constituents, pharmacological properties such as radical scavenging, antioxidant, antifungal [15,21,22,23], and acetylcholinesterase inhibitory activities had already been investigated [24]. Upon the review of previous studies, we identified that, there is a lack of research regarding anti-inflammatory activity on *Artocarpus nobilis* Thw. Therefore, we initiated the first set of *in vitro* experiments to evaluate the anti-inflammatory activity of aqueous and solvent (methanol, hexane, and dichloromethane) extracts of leaves and stem bark of *Artocarpus nobilis* Thw. by using the *In vitro* egg albumin denaturation method [25].
2. METHODOLOGY

2.1 Collection and Authentication of Plant Parts

Well grown and fully expanded fresh leaves and stem bark parts of *Artocarpus nobilis* Thw. (about 500g of each) were collected during daytime within natural flowering months of the plant from an estate in Gampaha district in Western Province, Sri Lanka (Latitude of 7° 23' 59.99" N and Longitude of 79° 98' 59.99"). Collected plant parts were identified and authenticated by a Botanist at National Herbarium, Peradeniya, Sri Lanka.

2.2 Preparation of Aqueous, Methanol, Dichloromethane, and Hexane Extracts of *Artocarpus nobilis* Thw. (Bedi del / Wal del) Leaves and Stem Bark

The dried and well-grounded plant powders of leaves and stem bark parts of *Artocarpus nobilis* Thw. were used for the extraction process. Four extractions aqueous, methanol, dichloromethane and hexane were obtained using the decoction extraction method. Extraction method, in brief, 50 g of the fine powder was weighed and added to 500 ml of solvent. This was added to the reflux apparatus and then it was boiled slowly for 4 hours. The prepared extract was left for cooling and filtered. The filtrate was concentrated using the rotary vacuum evaporator into sterile glass vials. The extracts were stored under 2-8 ºC until used for the experiment.

2.3 Evaluation of *in-vitro* Anti-inflammatory Activity

Dimethyl sulfoxide was used to dissolve the extracts to prepare following dilution series (15.625, 31.25, 62.5, 125, 250, 500, 1000, 2000 µg/ml) of each extract. Diclofenac sodium was used as the positive control and used at the same concentration series as test extract. Phosphate-buffered saline 2.8 ml (pH 6.4) and 0.2 ml of egg albumin (from fresh hen's egg) were used in the preparation of reaction mixtures. 2 ml of test extract was gently combined with reaction mixtures at concentrations of 15.625 to 2000 µg/ml. The mixtures were then incubated in a water bath for 15 minutes at 37± 2 ºC and then heated for 5 minutes at 70ºC. Then, the reaction mixture was allowed to cool down at room temperature. The absorbance of reaction mixtures was measured at 660 nm after cooling. Phosphate buffer was used as the blank. Diclofenac sodium (Positive control) was treated similarly for absorbance determination. The Whole experiment was done in triplicates. The percentage inhibition of protein denaturation of each test sample was calculated by using the following formula:

\[
\% \text{ Inhibition} = 100 \times \frac{(V_t - V_c)}{V_c}
\]

where,

\[
V_t = \text{Absorbance of the test sample at 660nm}, \quad V_c = \text{Absorbance of control at 660nm}
\]

3. RESULTS AND DISCUSSION

Plant extract dose-response data for aqueous, methanol, dichloromethane and hexane leaves of *A. nobilis* (both leaves and stem bark) along with positive control are shown in Table 1. The dose-response curve for extracts and positive control are shown in Fig 1. All the extracts show a strong positive statistically significant correlation (\(P = 0.05\)) between concentration and percentage inhibition. \(P\) values and \(R^2\) values were obtained using Graphpad Prism 8 (version 8.2.1).

Diclofenac sodium exhibits an IC\(_{50}\) value of 243.4 µg/mL and a high \(R^2\) value (\(R^2= 0.9759\)) conveying a strong positive relationship with the inhibitory percentage and log concentrations. Leaves extracts had following potencies aqueous (263.5 µg/mL) > dichloromethane (289.8 µg/mL) > methanol (338.5 µg/mL) > hexane (359.8 µg/mL). Stem bark extracts had following potencies: methanol (249.8 µg/mL) > hexane (341.4 µg/mL) > aqueous (553.4 µg/mL) > dichloromethane (557.2 µg/mL). In comparison of all leaves and stem bark extracts methanolic stem bark extract of *A. nobilis* Thw. exhibited the highest potency (249.8 µg/mL). This was activity was in par with the standard drug Diclofenac sodium (243.4 µg/mL). When compared the anti-inflammatory activity among extracts, methanolic stem bark extract shows almost 1.35 - fold higher activity compared to methanol leaves extract, 1.05 - fold higher activity compared to aqueous leaves extract, 2.22 - fold higher activity compared to aqueous stem bark extract, 1.16 - fold higher activity compared to dichloromethane leaves extract, 2.23 - fold higher activity compared to dichloromethane stem bark extract, 1.44 - fold higher activity compared to hexane leaves extract and 1.37 - fold higher activity compared to hexane stem bark extract.
Table 1. Dose-response curve details for methanol, dichloromethane, and hexane leaves and stem bark extract samples of *A. nobilis* Thw plant parts and positive control

<table>
<thead>
<tr>
<th>Tabular results</th>
<th>Positive control (Diclofenac Na)</th>
<th>Aqueous extracts</th>
<th>Methanol extracts</th>
<th>Dichloromethane extracts</th>
<th>Hexane extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC50 (µg/mL)</td>
<td>Leaves - 243.4</td>
<td>Bark - 263.5</td>
<td>Leaves - 553.4</td>
<td>Bark - 338.5</td>
<td>Leaves - 249.8</td>
</tr>
<tr>
<td>R-squared</td>
<td>Leaves - 0.9759</td>
<td>Bark - 0.9676</td>
<td>Leaves - 0.9642</td>
<td>Bark - 0.9738</td>
<td>Leaves - 0.9852</td>
</tr>
<tr>
<td>P-value</td>
<td>Leaves - 0.0057</td>
<td>Bark - 0.0048</td>
<td>Leaves - 0.0011</td>
<td>Bark - 0.0023</td>
<td>Leaves - 0.0035</td>
</tr>
</tbody>
</table>

Fig. 1. Dose-response curve for different extracts of *A. nobilis* Thw plant parts and positive control

*This graph was prepared using Graphpad Prism 8 (version 8.2.1), using non-linear regression model according to the equation: Span = Top – Bottom, Y=Bottom + (Top-Bottom)/(1+10^((Log IC50-X)*HillSlope)), where X is the log of dose response or concentration, Y is response*

The differences in the results for each extract were due to the variations in hydrogen, hydrophobic, electrostatic, and disulphide bonding taking place due to the mechanisms of denaturation [27]. Anti-inflammatory activity is likely to be mediated via the synergistic effect of flavonoids, alkaloids, tannins, saponins, phenols, steroids, glycosides, and terpenoids [28]. According to the literature on phytochemical studies, the high presence of xanthone, xanthoangelol, terpenoids, stilbene, phenols, flavonoids, and flavone in different extracts might contribute to this positive anti-inflammatory activity. Flavonoids have analgesic and anti-inflammatory activity by inhibiting a number of inflammatory mediators [29]. Terpenoids have analgesic and anti-inflammatory properties. The ability to inhibit phospholipase A2 and thus block the metabolism of arachidonic acid has been attributed to these properties [29]. Polyphenols have anti-inflammatory activity, antioxidant activity, act as vasodilators, and also prevent endothelial dysfunction and thrombosis. The ability to inhibit the activity of Cyclooxygenase, Lipoxygenase, and inducible Nitric Oxide Synthase enzymes contribute to the anti-inflammatory property [30]. Environmental changes, the texture of the soil, the amount of rain, the average temperature of a particular area could also affect the formation of phytoconstituents and elemental composition of *A. nobilis* Thw.
4. CONCLUSION

In conclusion, this study demonstrates, potent in vitro anti-inflammatory activity of methanol stem bark extract of Artocarpus nobilis Thw. compared to the positive control diclofenac sodium. Further elaborate studies are necessary to ascertain the mechanism and the active constituents responsible for the anti-inflammatory activities of the plant parts of Artocarpus nobilis Thw. Moreover, the results indicate a strong possibility of developing potent and cost-effective anti-inflammatory agents from the leaves and stem bark of Artocarpus nobilis Thw.

ACKNOWLEDGEMENTS

Authors acknowledge Mr. A.R.N. Silva, Dr. Darshana Kottahachchi, Dr CB Ranaweera, Dr. Kithsiri Jayasekara, Prof. Priyani Peiris for their guidance and support, all the laboratory staff members of General Sir John Kotelawala Defence University and Industrial Technology Institute, Sri Lanka for assistance in completing the research successfully.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

